

Ajankohtaista

- STUK.fi
- Ajankohtaista
- Aiheet
- Radon
- Radon aiheuttaa keuhkosyöpää
- Radonin lähteet
- Asuntojen radonia koskevat enimmäisarvot ja määräykset
- Radon Suomessa
- Radon uudisrakentamisessa
- Radonkorjaukset
- Radonvapaa lapsuus
- Ilman radonia -kampanja
- Kansallinen toimintasuunnitelma radonriskien ehkäisemiseksi
- Radon taloyhtiössä
- UV-säteily, aurinko ja solarium
- Säteily terveydenhuollossa
- Kodin ja toimiston säteilevät laitteet
- Matkapuhelimet ja tukiasemat
- Sähkönsiirto ja voimajohdot
- Säteilyn käyttö kauneudenhoidossa
- Laserit
- Ydinvoimalaitokset
- Ydinlaitoshankkeet
- Ydinjätteet
- Kaivokset
- Malminetsintä, valtaus ja YVA-menettely
- Uraanipitoisuudet Suomen kallioperässä ja vesistössä
- Kaivostoiminta
- Terrafamen kaivos
- Ympäristövahinko
- Talvivaaran kaivoksen ympäristöstä kerättyjen vesi- ja muiden näytteiden uraanipitoisuuksia
- Vesinäytteiden uraanipitoisuuksia maaliskuussa 2018
- Vesinäytteiden uraanipitoisuuksia elokuussa 2017
- Vesinäytteiden uraanipitoisuuksia maaliskuussa 2017
- Vesinäytteiden uraanipitoisuuksia marraskuussa 2016
- Vesinäytteiden uraanipitoisuuksia heinäkuussa 2016
- Vesinäytteiden uraanipitoisuuksia maaliskuussa 2016
- Vesinäytteiden uraanipitoisuuksia joulukuussa 2015
- Vesinäytteiden uraanipitoisuuksia heinäkuussa 2015
- Vesinäytteiden uraanipitoisuuksia huhtikuussa 2015
- Vesinäytteiden uraanipitoisuuksia joulukuussa 2014
- Vesinäytteiden uraanipitoisuuksia kesäkuussa 2014
- Vesinäytteiden uraanipitoisuuksia huhtikuussa 2014
- Vesinäytteiden uraanipitoisuuksia tammikuussa 2014
- Vesinäytteiden uraanipitoisuuksia lokakuussa 2013
- Vesinäytteiden uraanipitoisuuksia heinäkuussa 2013
- Vesinäytteiden uraanipitoisuuksia toukokuussa 2013
- Vesinäytteiden uraanipitoisuuksia huhtikuussa 2013
- Vesinäytteiden uraanipitoisuuksia maaliskuussa 2013
- Vesinäytteiden uraanipitoisuuksia helmikuussa 2013
- Vesinäytteiden uraanipitoisuuksia tammikuussa 2013
- Tilannearvio tammikuussa 2013
- Vesinäytteiden uraanipitoisuuksia joulukuussa 2012
- Vesinäytteiden uraanipitoisuuksia marraskuussa 2012
- Vesinäytteiden uraanipitoisuudet ennen ympäristövahinkoa
- Uraanipitoisuudet Talvivaaran vesistöjen pohjiin kerrostuneissa aineksissa
- Luontoon laskettujen ylijäämävesien uraanipitoisuuksia
- Talvivaaran kipsisakkajätteessä ei ole uraanin pitkäikäisiä tyttäriä
- Ympäristövahinko
- Säteily ympäristössä
- Elintarvikkeet ja juomavesi
- Säteilyvaara
- Suomalaisten turvallisuudesta huolehditaan
- Onnettomuuden vaikutukset
- Toimintaohjeet säteilyvaaratilanteessa
- Esimerkkejä säteilyannoksista
- Säteilyyn liittyviä poikkeavia tapahtumia
- Ohjeistus säteilyvaaratilanteissa tarvittavista suojelutoimista
- Ydinlaitos- ja säteilytapahtumien kansainvälinen vakavuusasteikko INES
- Mitä säteily on
- Radon
- STUK valvoo
- Säteilyn käyttäjälle
- Säteilytoiminnan turvallisuus
- Säteilysuojelun periaatteet
- Toiminnan suunnittelu
- Kuka vastaa ionisoivan säteilyn käytöstä?
- Turvallisuuslupa
- Säteilyn käyttöorganisaatio
- Työntekijöiden suojelu
- Tilojen säteilysuojaus
- Säteilylaitteet ja laadunvalvonta
- Turvallisuuskulttuuri
- Laadunvarmistus terveydenhuollon säteilyn käytössä
- Laadunvarmistus teollisuuden säteilyn käytössä
- Laadunhallintaan liittyviä termejä
- Laitteet
- Säteilylaitteiden käytönaikaiset vaatimukset
- Terveydenhuollon säteilylaitteita koskevat vaatimukset
- Radioaktiivisten aineiden käyttörajoitukset tuotteissa
- Säteilyn käytön valvontaviranomaiset
- Koulutus
- Säännöstö
- Säteilyn käytön aloittaminen
- Toiminnan valvonta
- Poikkeavat tapahtumat
- Koulutus
- Säteilysuojelukoulutus
- Vastaavan johtajan koulutuksen antamiseen tarvitaan hyväksyntä
- Tulevia koulutustapahtumia
- STUKin säteilyturvallisuuspäivät
- Koulutuspäivien materiaalia
- Sädehoitofyysikoiden 34. neuvottelupäivät 8.-9.6.2017 STUKissa
- Teollisuuden ja tutkimuksen 12. säteilyturvallisuuspäivät, 5.-7.4.2017, m/s Mariella
- Säteilylähteiden kauppaa koskeva tapaaminen 9.11.2016
- Teollisuuden 11. säteilyturvallisuuspäivät, 7.-8.10.2015, Helsinki
- Sädehoitofyysikoiden 33. neuvottelupäivät 9.-10.6.2016
- Säteilyturvallisuus ja laatu isotooppilääketieteessä 10.–11.12.2015
- Sädehoitofyysikoiden 32. neuvottelupäivät 4.-5.6.2015
- Terveydenhuollon röntgentoiminnan asiantuntijoiden neuvottelupäivät 13.-14.4.2015, Siikaranta
- Sädehoitofyysikoiden 31. neuvottelupäivät 5.-6.2014, Billnäsin Ruukki, Raasepori
- Säteilyturvallisuus ja laatu röntgendiagnostiikassa 19.-21.5.2014, m/s Viking Mariella
- Säteilyturvallisuus ja laatu isotooppilääketieteessä 21.-22.11.2013, Paasitorni, Helsinki
- Säteilymittaukset
- Uutiskirjeet säteilyn käyttäjille
- Säteilytoiminnan turvallisuus
- STUK valvoo säteily- ja ydinturvallisuutta Suomessa
- Ympäristön säteilyvalvonta
- Luonnonsäteilylle altistava toiminta
- Ydinturvallisuus
- STUKin ydinturvallisuusvalvonnan tehtävät
- STUK asettaa turvallisuusvaatimukset
- Laitoshankkeiden valvonta
- Turvallisuusanalyysit
- Laitosten toimintakunnon valvonta
- Laitosmuutosten valvonta
- Organisaation toiminnan valvonta
- Säteilyturvallisuuden valvonta
- STUK hyväksyy ydinlaitosten tarkastuslaitoksia
- Ydinjätehuollon valvonta
- Ydinmateriaalien valvonta
- Valvonnan kohteet
- STUKin kolmannesvuosiraportointi
- STUK osallistuu ydinlaitosten luvitukseen
- Fukushima-selvitykset
- Tiedote 16.5.2011: STUK antoi ministeriölle selvityksensä ydinlaitosten varautumisesta poikkeuksellisiin luonnonilmiöihin
- Tiedote 1.6.2011: EU:n stressitestit käyntiin Olkiluodossa ja Loviisassa
- Tiedote 15.9.2011: EU:n stressitestien kansallinen edistymisraportti valmistui
- Tiedote 31.10.2011: Voimayhtiöiden stressitestiselvitykset valmistuivat
- Tiedote 16.12.2011: Fortum ja TVO toimittivat STUKille pyydetyt lisäselvitykset
- Tiedote 30.12.2011: STUKin loppuraportti stressitesteistä valmistui
- Tiedote 26.4.2012: Eurooppalaisten ydinvoimalaitosten stressitestit on arvioitu
- Tiedote 6.6.2012: Euroopan ydinvoimalaitosten turvajärjestelyjä on arvioitu
- Tiedote 20.7.2012: STUK teki päätökset suunnitelmista ydinvoimalaitosten turvallisuuden parantamiseksi
- STUKin ydinturvallisuusvalvonnan tehtävät
- Turvajärjestelyjen valvonta
- Matkapuhelinten valvonta
- Lasereiden valvonta
- Solariumien valvonta
- Kauneudenhoito ionisoimatonta säteilyä käyttäen
- Säteilyn käyttäjälle
- Palvelut
- Palveluhinnasto
- Mittauspalveluiden yleiset toimitusehdot
- Radonmittaukset
- Pyyhintänäytteet
- Rakennusmateriaalit ja teollisuustuotteet
- Elintarvike- ja ympäristönäytemittaukset
- Juomaveden radioaktiivisuusmittaukset
- Ihmisen radioaktiivisuusmittaukset
- Muut radioaktiivisuusmittaukset
- Kalibrointipalvelut
- Mittausmenetelmien kuvaukset
- Paikallislaboratoriot
- PCXMC - A Monte Carlo program for calculating patient doses in medical x-ray examinations
- Säännöstö
- Julkaisut
- Tietoa STUKista
- STUKin tehtävä on valvoa säteilyturvallisuutta Suomessa
- STUKin strategia 2018-2022
- Organisaatio
- Talous
- Historia
- Neuvottelukunnat
- Kansainväliset arviot STUKin toiminnasta
- Yhteistyö
- Yhteystiedot
- Näin löydät meidät
- STUK sosiaalisessa mediassa
- Avoimet työpaikat
- Virka- ja työehtosopimukset
- Suunnittelu ja seuranta
- Hankinnat
- Palaute
- Usein kysyttyä
- Kysy säteilystä
- Viesti kirjaamoon
- Oikaisuvaatimusohje
- Julkinen diaari
- Avoin data
- Cores
- sateilytilanne
Uusi menetelmä radonpitoisuuden mittaamiseen
Uusi menetelmä radonpitoisuuden mittaamiseen
Säteilyturvakeskus ja Tampereen teknillinen yliopisto kehittivät uudentyyppisen radonmittausmenetelmän, joka soveltuu erityisesti radonpitoisuuden nopeaan mittaamiseen.
Radioaktiivinen radonkaasu on alfasäteilijä, joka voidaan havaita alfahajoamisen yhteydessä syntyvän ultraviolettivalon avulla. Valo syntyy ionisoivien hiukkasten törmätessä ilman typpimolekyylien kanssa ja ilmiö on siten verrattavissa revontuliin. Toisin kuin alfahiukkaset, ultraviolettivalo etenee ilmassa pitkiä matkoja ja sen ansioista radonhajoamisten suora havainnointi on mahdollista suuresta näytetilavuudesta.
Radonmittauksille on paljon tarvetta, sillä Suomessa noin puolet väestön vuotuisesta säteilyannoksesta aiheutuu sisäilman radonista. Radonaltistuksen seurannassa on keskeistä tuntea pitkän aikavälin keskimääräinen pitoisuus, mutta myös nopeita mittauksia tarvitaan erilaisissa tarkistuksissa ja korjausrakentamisessa.
Optinen radonmittaustekniikka vaatii vielä kehitystyötä ja on mahdollista, että uuden menetelmän ensimmäiset sovellukset nähdäänkin pienten esineiden ja työkalujen pintakontaminaatiotarkastuksissa. Tampereen teknillisen yliopiston optiikan laboratorio jatkaa menetelmän kehittämistä.
Artikkeli on julkaistu Scientific Reports -lehdessä, ja se on luettavissa lehden verkkosivuilla.
Lisätietoa
Tutkija Johan Sand, Tampereen teknillinen yliopisto, puh. 050 3777 719
Johtava asiantuntija Kari Peräjärvi, STUK, puh. (09) 759 88 705